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Abstract. In the absence of losses the phase of a Bose-Einstein condensate undergoes collapses and revivals
in time due to elastic atomic interactions. As experiments necessarily involve inelastic collisions, we develop
a model to describe the phase dynamics of the condensates in presence of collisional losses. We find that a
few inelastic processes are sufficient to damp the revivals of the phase. For this reason the observability of
phase revivals for present experimental conditions is limited to condensates with a few hundreds of atoms.

PACS. 03.75.Fi Phase coherent atomic ensemble (Bose condensation) – 05.30.Jp Boson systems

1 Introduction

Since the recent experimental observations of Bose-
Einstein condensation in dilute atomic gases [1–5], much
interest has been raised about the characteristic features
of the condensate [6–8], and about its coherence properties
in particular. Considerable attention has been devoted to
the matter of the relative phase between two Bose-Einstein
Condensates (BECs): how the phase manifests itself in an
interference experiment (such as the one performed re-
cently at MIT [9]), how the phase can be established by
measurement, and how it evolves in presence of the elastic
atomic interactions (see e.g. [10] and references therein).
In this paper, in view of a possible experimental investiga-
tion of these problems, we complete the theoretical work
already done on this subject by studying the dynamics of
the relative phase in presence of loss processes occurring in
the two condensates. Such loss processes, unavoidable in a
real experiment, are due for example to collisions of con-
densed atoms with the background gas, or to three-body
collisions between condensed atoms followed by recombi-
nation of two atoms to form a molecule [11,12].

We consider two mutually non interacting and spa-
tially non overlapping BECs in two trapping potentials.
We suppose that the experimentalist has at hand a de-
vice, such as the one depicted in Figure 1, allowing both
the measurement of the relative phase between the con-
densates and the preparation of a state with a well-defined
relative phase [13]. Starting from an initial state with
a well-defined relative phase, we imagine that the two
condensates evolve independently, under the influence of
the atomic interactions, during a given time interval t at
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Fig. 1. Two BECs A and B in two non overlapping trap-
ping potentials. Some atoms can be let out of the condensates
towards a 50–50 atomic beam splitter. The detection of the
atoms in the output channels of the beam-splitter realizes a
measurement of the relative phase between the condensates.

the end of which a measurement of the relative phase is
performed. By repeating this procedure many times, one
accesses the probability distribution of the relative
phase [13].

In the lossless case, the relative phase shows collapses
and revivals periodically in time due to the presence of
elastic atomic interactions. In presence of losses, we find
that a few inelastic processes are sufficient to dramatically
damp the revivals of the phase. In practice, for typical ex-
perimental configurations, the observability of the revivals
is limited to condensates with a small number of atoms,
of the order of a few hundreds, for which the revival time
is of the order of 0.1 to 1 second.

In Section 2 we present the theoretical model describ-
ing the evolution of the system in presence of losses.
An interesting feature of the model is that it can be solved
almost exactly analytically within the Monte-Carlo wave
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function approach recently put forward by several authors
[14–17]. We take advantage of this circumstance in the fol-
lowing sections, to deduce analytical expressions for the
interesting phase-dependent measurable quantities, and to
a give a simple picture of the phase dynamics in presence
of losses.

In Section 3 we find an approximate analytical expres-
sion for the evolution of a single stochastic wave function,
and we give a simple physical interpretation of the result
pointing out separately the role of the elastic atomic in-
teractions and of the losses in the dynamics of the relative
phase of the condensates. In Sections 4 and 5 we concen-
trate on the case in which the two condensates are placed
in two identical traps and have initially the same average
number of atoms, and we use the analytical results of Sec-
tion 3 to calculate the time dependence of some relative
phase dependent quantities. In particular in Section 4 we
consider an interference experiment where one counts the
atoms detected in the two output channels of the beam-
splitter of Figure 1, and we analyze the two different phys-
ical situations in which the condensates’ relative phase is
initially sharply defined or is described by a “broad” rel-
ative phase distribution with a width � 1/

√
N . In Sec-

tion 5 we imagine instead an experiment in which the time
evolution of the whole relative phase probability distribu-
tion is measured. Sections 6 and 7 are dedicated to the
analysis of additional features that would appear in an
experiment; the effect of asymmetries in the parameters
of the two condensates and in the initial average number
of atoms is considered in Section 6, and the effect of fluc-
tuations in the initial total number of atoms is considered
in Section 7. Some concluding remarks are presented in
Section 8.

2 Model

2.1 Master equation

Let us consider two mutually non-interacting and spatially
non-overlapping BECs A and B in two harmonic poten-
tials. Our starting point to describe the evolution of this
system in presence of m-body losses is a master equation
for the density matrix ρ describing the atoms in the traps:

dρ

dt
=

1

i~
[H, ρ] +

∫
d3rκ

[
[ψ̂(r)]m ρ [ψ̂†(r)]m

−
1

2
{[ψ̂†(r)]m[ψ̂(r)]m, ρ}

]
, (1)

where {X,Y } denotes the anticommutator, and [ψ̂(r)]m is
the field operator raised to the power m which suppresses
m particles in r. In second quantized form the Hamiltonian
H reads:

H =

∫
d3r

[
ψ̂†(r)H0ψ̂(r) +

g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
, (2)

where H0 is the one-particle Hamiltonian including
the trapping potential and the kinetic energy, and

g = 4π~2a/M where M is the mass of the atoms and
a is the s-wave scattering length.

The loss terms in equation (1) are parameterized by
the number m of particles lost per collisional event and
by the collisional constant κ. Physically the case m = 1
corresponds to collisions of atoms in the condensate with
atoms of background gas in the cell; the case m = 2 cor-
responds to spin-flip collisions between condensed atoms
in magnetic traps, as only specific spin components are
trapped; the case m = 3 corresponds to three-body colli-
sions between condensed atoms, leading to the formation
of an excited molecule and a hot atom supposed to leave
the condensate. The collisional constant κ for the pro-
cesses m = 1 and m = 3 has been measured for 87Rb
atoms at JILA [11] and for 23Na atoms at MIT [12]. The
collisional constant for the m = 2 process has not been
accurately measured for these atoms yet, as the two-body
losses seem to give a smaller contribution to the total de-
cay rate.

We assume that at any time the state of the con-
densate A (resp. B) can be described in terms of a sin-
gle occupied mode, neglecting the excitations out of this
mode due to a non-zero temperature or to the loss pro-
cesses. We assume furthermore that these modes are the
single particle ground state wave functions φa, φb given
self-consistently as functions of the number of particles by
the Gross-Pitaevskii equation:[
H0 + gNε|φε(r;Nε)|

2
]
φε(r;Nε) = µε(Nε)φε(r;Nε), (3)

where the µε(Nε)’s are the chemical potentials for the con-
densates with Nε particles, and where the wave functions
φε are normalized to unity. In more mathematical words
we approximate the atomic field operator by:

ψ̂(r) =
∑
ε=a,b

cεφε(r; N̂ε) (4)

where the operators c†a (c†b) and ca (cb) create and annihi-
late a particle in the condensate A (B) respectively, and

where N̂ε = c†εcε are the operators giving the number of
particles in each condensate. Note that we keep in equa-
tion (4) the dependence of the mode on the number of
particles in the condensate.

By substituting equation (4) into equation (2) we get

H = Ea(N̂a) +Eb(N̂b) (5)

with

Eε(Nε) = Nε

[∫
d3rφ∗ε (r;Nε)H0φε(r;Nε)

+
gNε

2
|φε(r;Nε)|

4

]
(6)

(we have used Nε − 1 ' Nε).
By assuming that in the considered time interval the

atom number distributions in the two condensates remain
peaked around the initial average values:

N̄ε = Tr[ρ(0)c†εcε], (7)
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we expand the condensates’ Hamiltonian around N̄a, N̄b
keeping up to the quadratic terms:

H(N̂a, N̂b) ' H
q(N̂a, N̂b) ≡

∑
ε=a,b

E(N̄ε) + (N̂ε − N̄ε)

× µε(N̄ε) +
1

2
(N̂ε − N̄ε)

2µ′ε(N̄ε). (8)

In our model we will use this quadratic version of the
Hamiltonian, where the chemical potentials µa and µb and
their derivatives can be calculated by solving numerically
the Gross-Pitaevskii equation (3).

We now substitute our ansatz equation (4) in the loss
part of the master equation; since the condensates do not
overlap this amounts to the substitution

[ψ̂(r)]m →
∑
ε=a,b

[cεφε(r; N̂ε)]
m (9)

in equation (1). In contrast to the Hamiltonian part which

required a careful quadratization in N̂ε−N̄ε to get the cor-
rect phase dynamics, the dissipative part will be treated
to lowest order by replacing N̂ε by N̄ε in equation (9).
This allows us finally to obtain a master equation of the
form:

dρ

dt
=

1

i~
[Hq(N̂a, N̂b), ρ] +

∑
ε=a,b

γε[cε]
mρ[c†ε ]

m

−
γε

2
{[c†ε]

m[cε]
m, ρ}, (10)

where (for ε = a, b) we have introduced the rates for the
m-body collisions:

γε = κ

∫
d3r|φε(r; N̄ε)|

2m. (11)

2.2 Stochastic formulation

To study the evolution of the system we adopt the Monte-
Carlo wave function point of view [14] which provides us
with a stochastic formulation of the master equation (10).
To this aim we introduce the jump operators:

Sε =
√
γε[cε]

m ε = a, b (12)

and an effective Hamiltonian:

Heff = Hq −
i~
2

∑
ε=a,b

S†εSε . (13)

The Monte-Carlo wave function |ψ(t)〉 undergoes a non
hermitian Hamiltonian evolution ruled by Heff (plus a
continuous renormalization) interrupted by random quan-
tum jumps occurring at a rate 〈ψ(t)|

∑
ε=a,b(S

†
εSε)|ψ(t)〉,

where |ψ(t)〉 is normalized to unity. The effect of a quan-
tum jump is to replace |ψ〉 by Sε|ψ〉 up to a normalization

factor. Physically this corresponds to the loss of m par-
ticles in the condensate ε via the m-body collisional pro-
cesses described above. The two kinds of jumps ε = a, b
occur with relative probabilities:

Pa

Pb
=
〈ψ(t)|S†aSa|ψ(t)〉

〈ψ(t)|S†bSb|ψ(t)〉
· (14)

Starting with a state with a fixed total number of particles
N , we can expand at each time the state vector on the
Fock basis

|ψ(t)〉 =
∑

Na=0,Ñ

dNa |Na, Ñ −Na〉, (15)

where Ñ is the total number of atoms at time t in the
two condensates, and we can carry out the evolution nu-
merically. The mean value of an observable Ô is obtained
by averaging the expectation value 〈ψ(t)|Ô|ψ(t)〉 over all
possible stochastic realizations for the evolution of |ψ(t)〉.

Usually the Monte-Carlo wave function technique is
carried out purely numerically. It turns out that for the
present problem it is possible to treat analytically the evo-
lution of a Monte-Carlo wave function and, after a minor
approximation, average analytically over all the possible
stochastic realizations. This leads to a simple interpreta-
tion of the dynamics and allows the derivation of analyti-
cal formulas for observables’ mean values. As it will appear
in the figures the analytical results are in good agreement
with the numerical results.

3 Evolution of a single wave function

In this section we derive an approximate formula for the
evolution of a single stochastic wave function, and we dis-
cuss its physical interpretation. We first consider the sim-
ple case in which the condensates are initially in a phase
state, introduced in the beginning of the section, and sub-
sequently the general case in which the initial state is char-
acterized by a given relative phase distribution.

For the following it will be useful to introduce the op-
erators

N̂ = N̂b + N̂a, n̂ = N̂b − N̂a (16)

corresponding to the sum and difference of the number of
atoms in A and in B.

3.1 Phase states

A very useful class of states of two condensates is repre-
sented by the phase states [18]:

|φ〉N =
1

√
2NN !

(c†ae
iφ + c†be

−iφ)N |0〉 (17)
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having a fixed total number of particles N and leading to
a well-defined relative phase 2φ between the condensates
A and B. These states have the remarkable properties:

cε|φ〉N =

√
N

2
eiφ (δε,a−δε,b) |φ〉N−1 ε = a, b (18)

e−iαn̂|φ〉N = |φ+ α〉N ∀α, (19)

where the δε,ε′ for ε, ε′ = a, b are Kronecker deltas. The
first property reflects the fact that in a phase state, all
the particles are in the same state (see Eq. (17)), and
the second one shows that n and φ are to some extent
conjugate variables like the momentum and position of a
particle. Note that the phase states are not orthogonal:

N 〈φ
′|φ〉N = [cos(φ− φ′)]N , (20)

though the function [cos(φ − φ′)]N in equation (20) be-
comes very peaked around zero when N → ∞ with a
width scaling as 1/

√
N . Any state with a total number N

of particles can be expanded on the overcomplete set of
phase states:

|ψ〉 = A

∫ π/2

−π/2

dφ

π
c(φ) |φ〉N , (21)

where c(φ) can be obtained from the expansion of the state
vector on the Fock state basis:

c(φ) = A−1
∑

Na=0,N

2N/2
(
Na!(N −Na)!

N !

)1/2

× ei(N−2Na)φ 〈Na, N −Na|ψ〉. (22)

The quantity |c(φ)|2 can be interpreted as the relative
phase probability distribution [13]. This distribution, flat
for a Fock state and very peaked for a phase state, is
normalized in such a way that:∫ π/2

−π/2

dφ

π
|c(φ)|2 = 1. (23)

The factor A in equation (21) ensures that |ψ〉 is normal-
ized to unity. For N � 1 and for a c(φ) varying slowly

at the scale 1/
√
N , we can replace the scalar product

N 〈φ′|φ〉N by the delta distribution
√

2π/Nδ(φ − φ′) to

obtain A = (πN/2)1/4.

3.2 Approximate expression for |ψ(t)〉

Consider the evolution of the state vector |ψ(t)〉, from a
time t0 = 0 to a time t, for a particular stochastic realiza-
tion. We imagine that k quantum jumps, each correspond-
ing to the loss of m particles, occur at times t1, ..., tk sepa-
rated by time intervals τj = tj− tj−1 with j = 1, ..., k; the
kth jump takes place in the condensate εk with εk = a, b.
We have:

|ψ(t)〉 = Ne−
i
~
Heff (t−tk)Sεke

− i
~
Heff τkSεk−1

× e−
i
~
Heff τk−1 ... Sε1e

− i
~
Heff τ1 |ψ(0)〉 (24)

where N is a normalization factor. By using the identity:

[cε]
mf(N̂a, N̂b) = f(N̂a +mδε,a, N̂b +mδε,a) [cε]

m

ε = a, b, (25)

we shift all the jump operators in equation (24) to the right
by letting them “pass through” the exponentials and we
obtain:

|ψ(t)〉 = N exp[−iHeff ({N̂ε})(t− tk)/~]

× exp[−iHeff ({N̂ε +mδε,εk})τk/~]

× exp[−iHeff({N̂ε+m(δε,εk+δε,εk−1
})τk−1/~]...

×
∏
j=1,k

Sεj |ψ(0)〉. (26)

We introduce now the major approximation in our calcula-
tions by replacing [c†ε]

m[cε]
m by N̄ε

m
in the expression for

the effective Hamiltonian equation (13), supposing that
the fraction of lost particles is small. The resulting effec-
tive Hamiltonian then takes the form:

Heff = Hq −
i~
2
λ , (27)

quadratic in N̂a and N̂b, where λ is a constant representing
the mean total number of collisional events per unit of
time:

λ = λa + λb with λa = γaN̄a
m
, λb = γbN̄b

m
. (28)

In this approximation the statistics of the quantum jumps
is simply Poissonian with a parameter λ and δb,εj = 1 −
δa,εj takes the values 1 and 0 with probabilities λb/λ and
λa/λ respectively, according to equation (14).

We then expand the effective Hamiltonians in each ex-
ponential in equation (26) around N̂a, N̂b in powers of
mδε,εk , m(δε,εk + δε,εk−1

), etc. Due to the quadratic de-

pendence of equation (27) on N̂a and N̂b we limit the
expansion at the first order, the subsequent terms being
constants or zero. By using equation (27) we then obtain
the following result for the state vector at time t:

|ψ(t)〉 = Ne−λt/2U0(t)U1(t)
∏
j=1,k

Sεj |ψ(0)〉. (29)

In equation (29) we have introduced the unitary operators

U0(t) =exp[−iHq({N̂ε})t/~] (30)

U1(t) =exp

[
−i

(
∂Hq

∂Na
({N̂ε})∆a+

∂Hq

∂Nb
({N̂ε})∆b

)
/~
]

(31)

where for ε = a, b:

∆ε = m
∑
j=1,k

∑
l=j,k

δε,εlτj = m
∑
l=1,k

δε,εltl (32)

are random quantities that depend on the particular real-
ization.

We sketch out briefly the physical interpretation of the
result equation (29), considering the action of the succes-
sive factors in equation (29) on a phase state defined in
equation (17).
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• The factor U0(t) in equation (29) accounts for the evo-
lution in absence of losses. Expressed in terms of the
operators N̂ and n̂ of equation (16) it involves:

Hq({Nε}) = f0(N̂) + n̂v(N̂) + n̂2(µ′b + µ′a)/8. (33)

We have used equation (8) and we have defined

v(N̂) =
1

2~
{µb − µa +

µ′b − µ
′
a

2
(N̂ − N̄)

−
µ′b + µ′a

2
(N̄b − N̄a)}, (34)

where N̄ = N̄a + N̄b and where µε stands for µε(N̄ε).
From the properties of the phase state we find that
the terms in n̂ and n̂2 in equation (33), when ex-
ponentiated in U0, (i) shift the relative phase at the

N -dependent constant speed v(N̂) and (ii) spread the
relative phase (in a way analogous to the spreading of
a wave packet of a massive particle under free evolu-
tion), respectively. The term f0(N̂) in equation (33) is
a function of the total number of atoms N only and
plays no role, since it amounts in U0(t) to adding a
global phase factor to the wave function. The phase-
spreading will eventually lead to a collapse of the rela-
tive phase [6]. On the other hand due to the discrete-
ness of the spectrum of the operator n̂ (the spectrum
of n̂ consists of even integers for an even N , and of
odd integers for an odd N), there are special times at
which the exponential operator equation (33) reduces
to a mere translation of the relative phase, yielding
the well-known result that revivals should follow the
collapses of the relative phase. More precisely if one
uses the expansion equation (15) for the phase state
defined in equation (17), one realizes that a relative
phase distribution initially peaked around φ0 displays
revivals at the times:

tR = qπ/χ, q integer (35)

where we have introduced:

χ =
µ′a + µ′b

2~
· (36)

At these times, for N even:

e−iχn̂
2tR/4|φ〉N = |φ+ qπ/2〉N (37)

and for N odd:

e−iχn̂
2tR/4|φ〉N = e−iqπ/4|φ〉N . (38)

The initial relative phase distribution is then recon-
structed around (φ0 + v(N)tR + qπ/2) for N even and
around (φ0 + v(N)tR) for N odd.
• The factor U1(t) in equation (29) accounts for the pres-

ence of losses. Expressed in terms of the operators n̂
and N̂ , it involves:

∂Hq

∂Na
({Nε})∆a/~+

∂Hq

∂Nb
({Nε})∆b/~ = f1(N̂) + n̂D

(39)

where global phase factors are included in f1(N̂). The
translation operator n̂ appears in equation (39) multi-
plied by a random quantity D defined as:

D = m
∑
l=1,k

tl

[
χδb,εl −

µ′a
2~

]
. (40)

Equations (19, 39) show that the relative phase in a
single stochastic realization is shifted by the random
amount D due to the loss processes. This effect will
turn out to have a dramatic influence on the coherence
properties of the condensates.
• Finally in equation (29) the action of the jump opera-

tors on a phase state is simply:

∏
j=1,k

Sεj |φ〉N =

[
N

2

N − 1

2
. . .

N −mk + 1

2

]1/2

× e−iφα|φ〉N−mk (41)

where we have introduced the quantity

α = m
∑
j=1,k

[
2δb,εj − 1

]
. (42)

Apart from numerical factors that will be absorbed
in the normalization and the phase factor involving
α, equation (41) amounts to reducing by a random
amount the total number of particles.

In the general case, an initial state with N particles
can be expanded on the phase states set (see Eq. (21)).
By using equations (33, 39, 41), and getting rid of the
global phase factors we then obtain the wave function:

|ψ(t)〉 = B(t)

∫ π/2

−π/2

dφ

π
c(φ, 0)e−iχn̂

2t/4

× e−iφα|φ+D + v(N −mk)t〉N−mk, (43)

where B(t) is a normalization factor.

4 Mean beating intensity of the condensates

To monitor the evolution of the relative phase between the
condensates, a possible choice is to determine the relative
phase dependent quantity 〈c†acb〉 after some time during
which the two condensates, initially prepared in a state
with a defined relative phase, evolve independently. As the
relative phase between the condensates is affected by the
elastic atomic interactions, the average 〈c†acb〉 undergoes
collapses and revivals in time.

In the situation described in Figure 1 the measure
of 〈c†acb〉 would correspond to the following measurement
scheme: Prepare a state in which A and B have a well-
defined relative phase [13]; let the condensates evolve dur-
ing a time interval t; then let p � N atoms escape from
the condensates and beat them on the beam-splitter. The
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counts registered in the two output channels of the beam-
splitter will be fluctuating variables whose averages over
many realizations of the whole procedure are [13]:

I± = 〈
p

N̂

(c†a ± c
†
b)(ca ± cb)

2
〉

'
p

N̄

1

2

(
〈c†aca〉+ 〈c†bcb〉 ± 2Re〈c†acb〉

)
, (44)

the difference between I+ and I− gives then the real part
of 〈c†acb〉.

We shall now use the approximated formulas (29, 43)
to calculate the time dependence of 〈c†acb〉. The main re-
sult of this section is that the revivals in this quantity are
damped in time with a simple exponential law e−λt where
the constant λ, defined in equation (28), is the mean num-
ber of loss processes per unit of time.

In the present and in the following section we restrict
for simplicity to the perfectly symmetric case where the
two trapping potentials are identical and the two conden-
sates have initially the same mean number of particles:

N̄a = N̄b, (45)

γa = γb, (46)

µa = µb. (47)

Moreover we consider an initial state having a fixed total
number of particles equal to N ; and as a reminder of this
choice (when it is the case) we will attach a superscript
〈...〉fix to the averages. The non symmetric case for the
condensates will be considered in Section 6; while the ef-
fect of fluctuations in the initial total number of atoms
(requiring a further averaging over N) will be analyzed in
Section 7.

We calculate 〈c†acb〉
fix in two different physical situa-

tions. The first one refers to a sharply defined initial rel-
ative phase (∆φ ' 1/

√
N) for which we choose a phase

state as the initial state; the second one, probably more
realistic from the experimental point of view, makes use
of an initial phase distribution much broader than 1/

√
N .

In each case we first calculate the expectation value of the
operator Ô = c†acb for a single stochastic realization using
the results of Section 3, and then take the average over the
stochastic realizations. In the whole paper we will denote
with 〈ψ(t)|Ô|ψ(t)〉 the single realization expectation value

and with 〈Ô〉 the quantum mechanical average.

4.1 Case of an initial phase state

Let us assume |ψ(0)〉 = |φ〉N ; by using equations (29) and
(33, 39, 41), for a single realization, we find:

〈ψ(t)|c†acb|ψ(t)〉 = N−mk〈φ+D|ei
χ
4 n̂

2tc†acb

× e−i
χ
4 n̂

2t|φ+D〉N−mk (48)

where χ and D are defined in equation (36) and equa-
tion (40) respectively. Note that the contribution involv-
ing the drift velocity of equation (34) vanishes as we are

considering here the symmetric case. The quadratic depen-
dence on n̂ in equation (48) can be eliminated by shifting

c†acb through the exponential e−i
χ
4 n̂

2t using equation (25):

ei
χ
4 n̂

2tc†acbe
−iχ4 n̂

2t = e−iχ(n̂+1)tc†acb (49)

so that

〈ψ(t)|c†acb|ψ(t)〉 = N−mk〈φ+D|e−iχ(n̂+1)t

× c†acb|φ+D〉N−mk; (50)

by using the properties (18, 19, 20) we then have:

〈ψ(t)|c†acb|ψ(t)〉 =
N −mk

2
e−2iφe−2iD

× [cos(χt)]N−mk−1. (51)

The next step is to take the average of the result equa-
tion (51) over the stochastic realizations which amounts
to averaging over the random variables k, τj and δb,εj (the
last two variables appearing in the random quantity D).
We show the calculation of the average in detail in the
Appendix A. The result for 〈c†acb〉

fix reads:

〈c†acb〉
fix = e−2iφe−λt

∑
k=0,N/m−1

N −mk

2

1

k!

× [λt u(t)]k [cos(χt)]N−mk−1
, (52)

where the function u(t) is given by:

u(t) =
sin(mχt)

mχt
· (53)

By identifying the factor N −mk with N under the as-
sumption of a small fraction of lost particles, and by ex-
tending the sum over k up to ∞, we are able to express
the result in a compact way1:

〈c†acb〉
fix = e−2iφe−λt[1−u(t)/ cosm(χt)]N

2
[cos(χt)]N−1.

(54)

The factor [cos(χt)]N−1 in equation (54), already obtained
in [19] in the absence of losses, is responsible for the col-
lapses of the average value 〈c†acb〉

fix and for revivals at
times tR = qπ/χ with q integer. The collapses and revivals
of 〈c†acb〉

fix are shown in Figure 2 both (a) in absence and
(b) in presence of three-body losses. We see immediately
that the losses have a dramatic effect reducing exponen-
tially in time the average with the rate λ given by equa-
tion (28). In fact at a revival times t = tR, u(t) vanishes
so that the average value of 〈c†acb〉

fix is simply attenuated
with respect to the lossless case:

〈c†acb〉
fix
t=tR = (−1)q(N−1)〈c†acb〉

fix
t=0 e

−λtR , (55)

1 It should be noted however that the compact formula (54)
diverges for χt = π/2+qπ, where the explicit sum equation (52)
should be used instead. At such points 〈c†acb〉

fix = 0 anyway.
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Fig. 2. Collapses and revivals of 〈c†acb〉
fix for an initial phase

state (a) without losses and (b) in presence of 3-body losses.
The calculation is performed for 87Rb atoms in the F =
1,mF = −1 state and for isotropic harmonic traps. The 3-
body loss rate is inferred from the experimental data of JILA.
The initial total number of atoms is N = 301, and the har-
monic frequencies are Ωa/2π = Ωb/2π = 500 Hz. Diamonds:
numerical result with 2.5 × 104 Monte-Carlo wave functions.
Solid line: analytical result.

by an exponential factor which is exactly the probability
that no particles are lost up to time t. The effect of losses
on the revivals, already significative when λtR ' 1 (that
is one loss process has occurred on average at the revival
time), can be understood by the fact that in each single
Monte-Carlo realization experiencing a quantum jump at
a time t ∼ tR the relative phase is shifted by an amount
D & π. This point will be further exemplified in Section 5.

4.2 Case of an initial relative phase distribution
broader than that of a phase state

Since it may be difficult to prepare experimentally the
condensates in a phase state we now consider the more
realistic case in which the initial relative phase distribu-
tion |c(φ, 0)|2 for the condensates is broad as compared to

1/
√
N . To be specific we assume that the initial relative

phase distribution is a Gaussian centered at φ = 0:

c(φ, 0) = G0 exp
(
−φ2/(4∆φ2)

) 1
√
N
� ∆φ� 1 , (56)

where φ ranges between −π/2 and π/2. This choice corre-
sponds to a Gaussian distribution for the number of par-

ticles in the condensates:

〈Na, N −Na|ψ(0)〉 = Ge−(N−2Na)2/4∆n2

(57)

with ∆n∆φ = 1/2.
For a single realization, we use equation (43) and we

proceed along the lines of the previous calculation to get:

〈ψ(t)|c†acb|ψ(t)〉 =

[
πÑ

2

]1/2 ∫ π/2

−π/2

dφ

π

dφ′

π

× c(φ, 0)c∗(φ′, 0)
Ñ

2
e−iα(φ−φ′)

× e−i(φ+φ′+2D)
Ñ−1〈φ

′ − χt|φ〉Ñ−1

(58)

where Ñ = N−mk with k equal to the number of quantum
jumps experienced by the Monte-Carlo wave function up
to time t. Now by using the fact that the scalar product
between the phase states for N � 1 is a very peaked
function of φ − φ′ with respect to the other functions in
the integral, we perform the substitution:

Ñ−1〈φ
′ − χt|φ〉Ñ−1 → cosÑ−1(q0π)

√
2π

Ñ

× δ(φ′ + q0π − χt− φ) (59)

where the integer q0 is chosen such that −π/2 < (χt+φ−
q0π) ≤ π/2. As the factor c(φ, 0) defined in equation (56)
is peaked around φ = 0, we neglect the dependence of
q0 on φ so that the integer q0 is finally chosen such that
−π/2 < (χt− q0π) ≤ π/2. In this way we obtain

〈ψ(t)|c†acb|ψ(t)〉 = (−1)q0(N−1) Ñ

2
ei(χαt−2D)

×

∫ π/2

−π/2

dφ

π
c(φ, 0)c∗(φ+ χt− q0π, 0) e−i(2φ+χt−q0π).

(60)

The next step is to average the factor ei(χαt−2D)over the
stochastic realizations. The procedure closely follows the
one in the Appendix A. By identifying Ñ with N , as in the
previous case, and by extending the boundaries of integra-
tion in equation (60) to ±∞ we can express the result in
the compact form2:

〈c†acb〉
fix =

N

2
e−λt[1−u(t)]

+∞∑
q=0

× e−[(χt−qπ)/2]2/2∆φ2

(−1)q(N−1) (62)

2 To obtain equation (62) we use the condition ∆φ � 1 to
set:

〈cac
†
b〉
fix
t=0 =

N

2

(∫ π/2

−π/2

dφ

π
c2(φ, 0) e−2iφ

)
'
N

2
· (61)
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Fig. 3. Collapses and revivals of 〈c†acb〉
fix for an initial phase

distribution broader than that of the phase state. The initial
total number of atoms is N = 301. The initial distribution for
the difference in the number of particles in the two condensates
is Gaussian with a standard deviation ∆n = 6 and a vanishing
mean (so that N̄a = N̄b). The other parameters are as in Fig-
ure 2b. Diamonds: numerical result with 2.5×104 Monte-Carlo
wave functions. Solid line: analytical result.

where u(t) is defined in equation (53). The factor involving
the sum over q in equation (62) plays the role of the factor
[cos(χt)]N−1 in equation (54) which was obtained for an
initial phase state. At each time tR = qπ/χ there is a
revival of the quantity 〈c†acb〉

fix and equation (62) reduces
to the very simple expression:

〈c†acb〉
fix
t=tR = (−1)q(N−1)〈c†acb〉

fix
t=0 e

−λtR . (63)

This formula does not depend on the initial width ∆φ and
coincides with the one equation (55) obtained for a phase
state. There is therefore no possible way of reducing the
damping of the revivals by adjusting the initial width of
the phase distribution. Only the temporal width of the
revivals is larger for a distribution broader than that for
a phase state, as it clearly appears from a comparison
between Figure 3 and the previous Figure 2b.

Remark : Formula (62) can also be used to study the col-
lapse of the phase around t = 0. For short times (t� tR)
we expand u(t) to second order in t obtaining:

〈c†acb〉
fix '

N

2
exp

{
−

(χt)2

8∆φ2

[
1 +

4

3
m2∆φ2λt

]}
. (64)

In the absence of losses we recover the collapse time
tc = 2∆φ/χ [10] as the half temporal width at the relative
height e−1/2 of the mean signal 〈c†acb〉

fix. Losses start ac-
celerating the collapse significantly when λtc > 1/m2∆φ2.
As this last quantity is much larger than 1 the subsequent
revivals cannot then be observed.

5 Evolution of the relative phase distribution

We turn now our attention to the phase distribution
|c(φ)|2 which could be reconstructed in an experiment for
example via a series of multichannel measurements. We
show an example of the procedure in Figure 4 [13,20].

Fig. 4. Monte-Carlo simulation of a multichannel detection
experiment using the device in Figure 1 to sample the relative
phase distribution corresponding to the initial state of Figure 3.
(a) Single realization of the multichannel detection: For each
dephasing βi = iπ/10, i = 0 . . . 9 added to one of the input
channels of the beam splitter, p+(βi) (resp. p−(βi)) particles
are detected in the + (resp. −) output channel of the beam
splitter with p+(βi) + p−(βi) = p = 20. The obtained integers
p+(βi) (diamonds) are fitted with the function p cos2(φ0 − β)
(solid line) where −π/2 < φ0 ≤ π/2 is the adjustable param-
eter, varying from one realization to the other. (b) After 100
realizations of the multichannel detection (each starting with
new condensates): histogram for the obtained values of φ0.

In the frame of our model, the evolution of c(φ) can
be obtained numerically from the evolution of the state
vector |ψ(t)〉 expanded on the Fock state basis by using
equation (22); however, as we show in the following, the
approximated analytical treatment allows us also in this
case to find some simple results at the revival times.

Let the initial state of the condensate, with a total
number N of atoms, be characterized by a given relative
phase distribution amplitude c(φ, 0); the state vector at
time t is then given by our approximated formula equa-
tion (43). One can easily check that the integrand in equa-
tion (43) is periodic of period π so that we can shift the
interval of integration to obtain3:

|ψ(t)〉 = B(t)e−iχn̂
2t/4

∫ π/2

−π/2

dφ

π
c̃(φ−D − v(Ñ)t, 0)|φ〉Ñ

(65)

where c̃(φ) = e−iαφc(φ) and Ñ = N − mk. This result
has a very suggestive interpretation: the loss processes in
a single realization shift the relative phase distribution by
a random amount D, and the overall evolution can be sep-
arated in a random shift plus the Hamiltonian evolution.
To make clearer this interpretation, we have plotted in
Figure 5 the phase distribution at the second revival time
(given by Eq. (35) with q = 2) for different realizations.
For λtR ' 1, as in the figure, there is an important frac-
tion of realizations in which the relative phase is shifted
considerably. This is the reason why the relative phase
distribution at the revival time will be smeared out by
the losses when we take the average over the stochastic
realization, which we do now.

3 When φ→ φ+π, c(φ, 0) is multiplied by (−1)N , exp(−iαφ)
is multiplied by (−1)mk, and the phase state |φ+D + vt〉Ñ is
multiplied by (−1)N−mk.
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Fig. 5. Single realization relative phase probability distribu-
tion at t = 0 and at the 2nd revival time t = 2π/χ for three
different Monte-Carlo wave functions. The parameters are as
in Figure 3. From upper left to lower right the wave functions
have experienced 0, 3, 1 and 0 quantum jumps respectively.

As in Section 4 we consider the symmetric case defined
by the equations (45, 46, 47). Furthermore we restrict our-
selves to the revival times t = tR = qπ/χ, q integer (see
Eq. (35)). In this case the Hamiltonian evolution opera-
tor in equation (65) takes a simple numerical form (see
Eqs. (37, 38)) and by comparing equation (65) to equa-
tion (21) we can simply read out the phase distribution
amplitude c(φ, t):

c(φ, tR) = c̃(φÑ −D, 0), (66)

where:

φÑ = φ− qπ/2 for Ñ even (67)

φÑ = φ for Ñ odd. (68)

From equation (66) we see again that a single loss event
(which can lead to D & π) has a dramatic effect on the
phase distribution.

As shown in the Appendix B the phase distribution at
the revival times averaged over the stochastic realizations
takes the very simple form:

〈|c(φ, tR)|2〉fix = (1− eλtR) + e−λtR |c(φN , 0)|2. (69)

At the revival time the relative phase distribution is
“damped” by the factor e−λtR while a flat background
component appears. This effect is clearly shown in
Figure 6, where we have plot the averaged relative phase
distribution at t = 0 and at the second revival time.

Fig. 6. Relative phase probability distribution at t = 0 and
at the 2nd revival time. The parameters are as in Figure 3.
Solid line: analytical prediction. Diamonds: average of 2.5×104

Monte-Carlo wave functions.

6 Effect of an asymmetry
between the two condensates

In the previous sections we have investigated the relative
phase dynamics in the symmetric case for the two conden-
sates. In this section we extend the analysis to account
for a small imbalance in the initial average number of
particles

|N̄b − N̄a| � N̄ , (70)

where N̄ is the average of the total initial number of par-
ticles, and for arbitrary values of the parameters µa, µb,
γa, γb. We restrict the calculation to the contrast of the
interference fringes between the two condensates averaged
over many experimental realizations, assuming an initial
phase distribution broader than the phase state.

Our initial Monte-Carlo wave function has a fixed total
number of particles equal to N , and a Gaussian distribu-
tion for number of particles in each condensate. The cal-
culation of 〈c†acb〉

fix is now slightly more involved than in
the symmetric case, as the phase distribution amplitude
c(φ, 0) acquires a phase factor varying rapidly with φ at

the scale 1/
√
N . All the calculations are therefore put in

the Appendix C, and we give here the result only at the
revival time t = tR:

〈c†acb〉
fix
t=tR = (−1)q(N−1)N

2
e−2iv(N)tRe−λtR[1−U(tR)],

(71)

where v(N) is defined by equation (34) and U(t) is a func-
tion of time (see Eq. (C.11) in Appendix C). In Figure 7
we show an example of the time evolution of 〈c†acb〉

fix in
the case of a 10% asymmetry in the initial number of par-
ticles N̄a and N̄b. As far as the damping of the revivals is
concerned, no significant difference appears with respect
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Fig. 7. Collapses and revivals of 〈c†acb〉
fix for a 10% asymme-

try in the initial number of particles N̄a and N̄b in the conden-
sates N̄a = 135.5 and N̄b = 165.5, leading to γa 6= γb, µa 6= µb.
The initial total number of atoms is N = 301. The initial dis-
tribution for the difference in the numbers of particles n in the
condensates is Gaussian with a standard deviation ∆n = 6,
and a non-vanishing mean value equal to 30. The other pa-
rameters are as in Figure 2b. Diamonds: numerical result with
2.5 × 104 Monte-Carlo wave functions. Solid line: analytical
result.

to the symmetric case. The damping of the revivals is in
this case ruled by the exponent:

−λtR[1−ReU(tR)] (72)

where:

ReU(tR) =
1

λ
(λb sinc(mµ′btR/~) + λa sinc(mµ′atR/~)) ,

(73)

where sinc(x) = sin(x)/x. Obviously |ReU(tR)| ≤ 1,
meaning that an asymmetry between the condensates
cannot amplify the revivals with respect to the lossless
case. From equation (73) we notice, just as a curiosity,
that a complete suppression of the effect of the losses
(ReU(tR) = 1) would occur only in the case in which
there are no losses in the condensate A (λa = 0) and no
elastic interactions in the condensate B (µ′b = 0) (or vice
versa).

A trivial effect of the asymmetry, evident in
Figure 7, is the appearance of oscillations of the mean
value 〈c†acb〉

fix due to the non zero drift velocity of the
relative phase of the condensates. We will see in the next
section that this effect, harmless at first sight, can have
dramatic consequences when we consider the effect of the
dispersion in the initial total number of particles N .

7 Effect of fluctuations in the total number
of particles

Through all the previous sections in this paper we have
chosen an initial state, represented by our initial Monte-
Carlo wave function, with a fixed total number of parti-
cles in the condensates. The averages that we calculated
〈...〉fix then correspond to the real quantum mechanical
averages supposing that the initial total number of atoms
is fixed to a value N for any realization of the experiment.
In practice it is probably difficult to produce a Fock state
for the condensates and the total number of atoms should
be governed by some probability distribution P (N). Since
we have analytical formulas for the quantities of interest
(such as the average 〈c†acb〉

fix), it is very simple to add a
further averaging over N for a given P (N). Suppose for
example that the distribution for the initial total num-
ber of atoms is a Poissonian distribution of parameter N̄ .
By averaging the result equation (71), valid at the revival
times tR for slightly asymmetric condensates, we get:

|〈c†acb〉
Poiss
t=tR | =

N̄

2
e−λtR[1−ReU(tR)]

× e−N̄{sin
2(µ′atR/2~)+sin2(µ′btR/2~)}. (74)

The result equation (74) shows that a slight asymmetry
between the condensates kills the revivals of 〈c†acb〉: the
quantity in curly brackets, multiplied by the large number
N̄ , does not vanish in general when µ′a 6= µ′b. This is due to
the fact that the drift velocity of the relative phase v(N)
in equation (71) depends on the initial total number of

particles, giving to 〈c†acb〉
fix
t=tR a phase factor of the form:

exp[−2iv(N)tR] ∝ exp
[
i (N − N̄)

µ′b − µ
′
a

2~
tR

]
= exp

[
i (N − N̄)

µ′b − µ
′
a

µ′b + µ′a
qπ
]
. (75)

To be able to observe the revivals it is then necessary to be
as close as possible to the symmetric conditions in order
to satisfy:

µ′b − µ
′
a

µ′b + µ′a
∆N � 1, (76)

where ∆N is the width of the distribution P (N).
If the symmetry between the condensates is perfectly

realized, the atom number fluctuations have the simple
effect of doubling the revival time. We show an example
in Figure 8 where we averaged the result for 〈c†acb〉

fix for
an initial phase state (Fig. 2) using a Poissonian distri-
bution for P (N). The main effect is the disappearance of
the “odd” revivals; this is due to the fact that the ampli-
tude of these odd revivals for N particles is proportional
to [cos(qπ)](N−1) = (−1)(N−1) which alternates its sign
depending on the parity of N .

In fact it is possible to show that a Poissonian ensemble
of phase states is equivalent to a coherent state for the two
condensates, as long as one calculates the mean values of
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Fig. 8. Collapses and revivals of 〈c†acb〉
fix for an initial phase

state with N = 301 particles (solid line) and after an average
over N with a Poisson distribution of parameter N̄ = 301
(diamonds). The effect of the average is mainly to suppress
the odd revivals. The parameters are as in Figure 2b and the
results are obtained from the analytical predictions.

operators commuting with the total number of particles
in the condensates. For the perfectly symmetric case in
Figure 8 we then recover the result obtained in [19] (in the
absence of losses) i.e. the doubling of the revival period
for a coherent state of the condensates as compared to the
phase state.

Within the coherent states pictures we can also rein-
terpret the result equation (74) for the asymmetric case in
the following way: in order to observe a revival of the rel-
ative phase between two condensates it is necessary that
both condensates display a phase revival at the same time
i.e. µ′a/2~tR = qπ and µ′b/2~tR = q′π, with q, q′ integers.

8 Conclusion

We have studied the dynamics of the relative phase be-
tween two Bose-Einstein condensates in presence of m-
body loss processes in order to question the observability
of the collapses and revivals of the phase predicted by
purely Hamiltonian models.

We have shown that the losses damp exponentially in
time the phase dependent quantity 〈c†acb〉 (see Eq. (55) for
an initial phase state and Eq. (63) for an initially broader
phase distribution). The decay rate λ of 〈c†acb〉 coincides
(up to the factor m) with the mean total number of parti-
cles lost per unit of time, and it is therefore approximately
N times larger than the inverse lifetime of a particle in the
condensates, where N is the total number of particles ini-
tially in the condensates.

The dramatic effect of the losses on the relative phase
has been suggestively interpreted within the Monte-Carlo
wave function approach. In a single realization each single
loss event occurring at a time of the order of the revival
time shifts the relative phase by a random amount of the
order of π. A few loss processes are then sufficient to smear
out the relative phase completely at the revival time when
the average over the stochastic realizations is taken. For
this reason the experimental observation of the revivals
is limited to condensates with a small number of atoms
where the condition λtR < 1 (where tR is the revival time

Fig. 9. Collision fluxes λ(1) (stars) and λ(3) (diamonds), due to
one-body and three-body collisions respectively, calculated as
in Figure 2, and inverse of the first revival time 1/trev = χ/π
(solid line) as a function of the total number of atoms. The
trap frequency is Ω = 2π×500 Hz in (a) and Ω = 2π×200 Hz
in (b). The vertical dashed line for N̄ = 301 in (a) represents
the conditions of Figure 2b. λ(1) corresponds to a lifetime due
to background gas collisions of 350 seconds.

Eq. (35)) can be satisfied for all the relevant loss processes
in the system.

In order to give an idea of the possible scenarios and
of the order of magnitudes in different experimental con-
ditions, we have shown in Figure 9 the loss rates due to
one-body and three-body collisions and the inverse revival
time as functions of the total number of atoms, for two
different values of the trap frequencies. For higher trap
frequencies (Fig. 9a) the revivals occur on a shorter time
scale and one is confronted mainly to three-body losses,
while for less confining traps (Fig. 9b) collisions with the
residual gas should be taken into account due to longer
revival times. Figure 9 shows that phase revivals in pres-
ence of losses are in principle observable in condensates
with some hundreds of atoms.

By studying the general case of two asymmetric con-
densates, and the effects of fluctuations in the initial to-
tal number of atoms in the condensates, we have finally
pointed out a practical difficulty which should be over-
come in order to observe phase revivals. The difficulty
comes from the fact that in the case of two non perfectly
symmetric condensates their relative phase drifts with a
velocity depending on the initial total number of atoms.
For this reason random fluctuations in the initial number
of atoms turn out to destroy the relative phase revivals
when the asymmetry is too large. A possible way to over-
come this problem is of course to use two almost sym-
metric condensates. Another possibility, which we have
not examined in detail, would be to use a condensate A
which has a collapse time longer than the duration of the
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experiment (N̄(µ′atR/~)2 � 1) as a phase reference to
measure the evolving phase of the other condensate B.
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Appendix A: Average of the phase factor e�2iD

In this appendix we derive the average over the stochastic
realizations of the quantity e−2iDS(k) where D is defined
in equation (40) and where S(k) is an arbitrary function
of the number of jumps k. We perform the average over
the variables δb,εj first, using their probability distribution
given after equation (28); we have:

〈e−2iD〉δb,εj =
∏
j=1,k

1

λ
(λbe

− i
~
mµ′btj + λae

i
~
mµ′atj )

≡
∏
j=1,k

f(tj). (A.1)

In order to perform the average over the variables k and
τj , we need the probability distribution Pt(k, t1, t2, ...tk)
of having in the time interval (0, t) exactly k jumps sep-
arated by time intervals τj = tj − tj−1. Since we as-
sume that the loss processes occur randomly with a con-
stant rate λ, corresponding to a waiting-time distribution
of the form w(τ) = λe−λτ , the probability distribution
Pt(k, t1, t2, ...tk) is simply [17]:

Pt(k, t1, t2, ....tk) = λke−λt. (A.2)

Using this result we are led to the calculation of a multiple
integral of the form:

I =

∫
0<t1<t2...<tk<t

f(t1)f(t2)...f(tk) dt1dt2...dtk (A.3)

where f(t) is the argument of the product in equa-
tion (A.1). Since I is equal to Iσ calculated for any per-
mutation tσ(1), ...tσ(k) of the integration variables, we can
write it as:

I=
1

k!

[∑
σ

∫
0<tσ(1)<...<tσ(k)<t

f(t1)f(t2)...f(tk)dt1dt2...dtk

]

=
1

k!

[∫ t

0

f(t)dt

]k
. (A.4)

We then obtain

〈S(k)e−2iD〉k,τj ,δb,εj =
∑
k≥0

S(k)
λk

k!

[∫ t

0

f(t) dt

]k
e−λt.

(A.5)

In this last equation we may have to introduce by hand a
cut-off N/m− 1 over the index k if S(k) has divergences
for k ≥ N/m (i.e. when no particles are left in the con-
densates).

Appendix B: Phase distribution at revival
times

We are interested in calculating the phase distribution
at the revival time averaged over the realizations that is
〈|c(φ, tR)|2〉k,τj ,δb,εj . We restrict to the symmetric case be-

tween the condensates and we start from equation (66).
By using equation (22) for t = 0 we have:

〈|c(φ, tR)|2〉k,τj ,δb,εj = |A(0)|−2
∑

Na=0,N

∑
N ′a=0,N

fac(Na)

× fac∗(N ′a)〈e
2i(N ′a−Na)(φÑ−D)〉k,τj ,δb,εj

(B.1)

where we have introduced the notation

fac(Na) = 2N/2
(
Na!(N −Na)!

N !

)1/2

〈Na, N −Na|ψ(0)〉.

(B.2)

The calculation of the average over the stochastic real-
izations closely resembles the previous one equation (A.1)
that we have explained in the Appendix A; we have:

〈e2i(N ′a−Na)(φÑ−D)〉k,τj ,δb,εj =
∑
k≥0

e−λtR
(λtR)k

k!

×

[
sin[(N ′a −Na)mχtR]

(N ′a −Na)mχtR

]k
e2i(N ′a−Na)φÑ . (B.3)

We note that the terms in the sum in equation (B.3) for
k 6= 0 are equal to zero unless (N ′a − Na) = 0 in which
case the average in equation (B.3) is equal to one. We can
then rewrite the result (B.1) as:

〈|c(φ, tR)|2〉fix= |A(0)|−2

 ∑
Na=0,N

∑
N ′a=0,N

δN ′a,Na |fac(Na)|2

×(1− δN ′a,Na)
(

fac(Na)[fac(N ′a)]∗e2i(N ′a−Na)φN e−λtR
)]
.

(B.4)

Now by using the property:∑
Na=0,N

|fac(Na)|2|A(0)|−2 = 1 (B.5)

coming from the normalization condition equation (23)
and from equation (22), we find the suggestive result equa-
tion (69).
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Appendix C: Asymmetric condensates

In this appendix we show the explicit calculation of the
mean contrast of the interference fringes 〈c†acb〉

fix for
asymmetric condensates. We consider an initial Monte-
Carlo wave function for which the total number of parti-
cles N is fixed and the number of particles in condensate
A has a Gaussian probability distribution:

〈Na, N −Na|ψ(0)〉 = Ge−(Na−xaN)2/∆n2

(C.1)

where G is a normalization factor and ∆n is the standard
deviation for the difference n in the number of particles
in the two condensates. The quantities xa = N̄a/(N̄a +
N̄b) and xb = N̄b/(N̄a + N̄b) are the average fractions of
particles initially in the condensate A and B respectively,
which are supposed to be fixed from one realization to the
other even in presence of fluctuations of the initial total
number of atoms.

We suppose in what follows that

1� ∆n�
√
N, (C.2)

and

|xaN − xbN | � N. (C.3)

We first derive the phase distribution amplitude corre-
sponding to the initial state equation (C.1) by using equa-
tion (22). We evaluate the factorials in equation (22) using
the Stirling’s formula, and we use a local approximation
valid for |Na − xaN | �

√
N :

Na!(N −Na)!

N !
'

(xaN)!(xbN)!

N !
e(Na−xaN) ln(xa/xb).

(C.4)

By approximating the discrete sum in equation (22) with
an integral over Na ranging from −∞ to +∞ we obtain:

c(φ, 0) = Ne−φ
2∆n2

eiκφ (C.5)

where:

κ = (xb − xa)N −
1

2
∆n2 ln(xa/xb) (C.6)

and whereN is a normalization factor obtained from equa-
tion (23). We note that in the symmetric case N̄a = N̄b, we
recover the Gaussian dependence for c(φ) of equation (56)
with ∆n∆φ = 1/2.

We are now ready to calculate 〈c†acb〉
fix starting from

equation (43). The calculation closely follows the one in
Section 4. In particular we use the key property equa-
tion (49) to obtain:

〈ψ(t)|c†acb|ψ(t)〉 =
1

π2
|B(t)|2|N |2

∫ π/2

−π/2
dφ

∫ π/2

−π/2
dφ′

× e−(φ2+φ′2)∆n2

ei(κ−α)(φ−φ′) Ñ

2

× e−i[φ+φ′+2(D+v(Ñ)t)]
Ñ−1〈φ

′−χt|φ〉Ñ−1.

(C.7)

The phase factor eiκ(φ−φ′) in the integrand varies rapidly
with φ−φ′ at the scale 1/

√
N when N̄b−N̄a is larger than√

N . For this reason we approximate the scalar product
between the phase states |φ〉Ñ and |φ′〉Ñ by a Gaussian

exp(−Ñ(φ − φ′)2/2) rather than by the δ distribution of
Section 4. This leads to the approximation

Ñ−1〈φ
′−χt|φ〉Ñ−1'(−1)q0(Ñ−1)e−(Ñ−1)(φ′−φ−χt+q0π)2/2

(C.8)

where the integer q0 is chosen such that −π/2 < (χt −
q0π) ≤ π/2. By extending the limits of integration over
φ, φ′ to ±∞ in equation (C.7) we are then left with a
double Gaussian integral that can be calculated exactly.
The result is quite involved but it can be simplified by
using the condition (C.3) and equation (C.2). We take
the average over the stochastic realizations and we use
again equation (C.2) to simplify the result. We calculate
the normalization factor B(t):

1 '
1

π2
|N |2|B|2(t)

(
2π

4
∆n2

)1/2(
2π

Ñ +∆n2

)1/2

× e−
1
2 (κ−α)2/(Ñ+∆n2). (C.9)

We finally obtain for the mean contrast of the interference
fringes between A and B as:

〈c†acb〉
fix ' e−λte−2iv(N)t

+∞∑
q=0

e−
1
2∆n

2[(χt−qπ)]2(−1)q(N−1)

×

N/m−1∑
k=0

Ñ

2
e
−iκ(χt−qπ) Ñ−1

∆n2+Ñ−1
1

k!
[λtU(t)]k

(C.10)

where the function U(t) is given by:

U(t) =
1

λ

(
λb
eimµ

′
bt/~ − 1

imµ′bt/~
+ λa

e−imµ
′
at/~ − 1

−imµ′at/~

)
. (C.11)
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